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Coherence correlations in the dissipative two-state system
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We study the dynamical equilibrium correlation function of the polaron-dressed tunneling operator in the
dissipative two-state system. Unlike the position operator, this coherence operator acts in the full system-plus-
reservoir space. We calculate the relevant modified influence functional and present the exact formal expres-
sion for the coherence correlations in the form of a series in the number of tunneling events. For an Ohmic
spectral density with the particular damping strenigth % the series is summed in analytic form for all times
and for arbitrary values of temperature and bias. Using a diagrammatic approach, we find the long-time
dynamics in the regimi < 1. In general, the coherence correlations decay algebraically’sat T=0. This
implies that the linear static susceptibility diverges H@E% asT—0, whereas it stays finite fd{>% in this
limit. The qualitative differences with respect to the asymptotic behavior of the position correlations are
explained[S1063-651X98)06910-4

PACS numbgs): 05.30—d, 05.40+j, 73.40.Gk

[. INTRODUCTION algebraic decay law is a signature of Ohmic dissipation.
Recently, focus has been put on expectation valad$
The simplest model that allows one to study the interplayand equilibrium correlationgl5] connected with the tunnel-
of tunneling and dissipation is the spin-boson maddeP]. ing operatoto, . The expectation valugr,(t)) and the equi-
Despite its simplicity, it exhibits generic features of many librium autocorrelation function of, have been found to be
complex systems and has found widespread applications imonuniversal, i.e., they vanish in the scaling lifil#4,16.
physics and chemistry. It has been adopted to describe dHere, we study the equilibrium autocorrelation function of a

verse systems, like the tunneling of atoms between a surfagglaron-dressed tunneling operai®g, which includes the
and the tip of an atomic-force microscof, or the dynam-  adiabatic dynamics of the bath modésl7]. This function is
ics of the trapped flux in a quantum interference dey#&le  universal and measures correlations of the off-diagonal ele-
to mention a few. ments (coherencesof the density matrix. We present the
For Ohmic dissipation, the spin-boson model shows axact formal solution for the coherence correlations in the
transition between coherent and incoherent tunneling whergyrm of a series in the number of tunneling events. We then
the location of the transition depends on the dampinganalyze the resulting expression in various limits. In particu-
strength and on the bid®]. Most investigations have been |ar, we work out the differences in the asymptotic decay
done for the nonequilibrium expectation val(te,(t)), rep-  between the position correlations and the coherence correla-
resenting the population difference between the two localtions. Our analytical real-time approach is complementary to
ized states, and for the, autocorrelation function, describ- the recent imaginary-time numerical studies in R&g].
ing position or population correlatior{$,6]. For the Iattgr In Sec. I, we formulate the problem and introduce the
quantity, the analogy with the Kondo model and the“1/ ., elation functionC,(t) of the coherence operatar, .
Ising model has been utilizef—9] in numerical computa- - gjnce this operator acts in both the system and bath space,
tions. For Ohmic damping and zero temperature and biagne elimination of the bath modes has to be reconsidered.
(o4(t)) shows a transition betwee? damped oscillations anerhe relevant considerations leading to a modified influence
incoherent relaxation exactly &= [10]. Recently, it has  fnctional are given in Sec. Iil. These results are used in Sec.
been arguedl11] that the quality factor of the oscillation is |y, {5 determine exact formal expressions fy(t). In Sec.
exa(itly given byQ=co{nK/2(1-K)], which again gives y; \ye present the analytical solution fex(t) for the special
K= 3 for the transition. For the antisymmetrized autocor- | 5j e K = L. Section VI is devoted to the regime=1%— «
relation function, the same quality factor and thus the samg;i, , <1 Finally, in Sec. VII we show that the asymptotic

transition point were found numericall@]. This is not in decay of C (t) at zero temperature is algebraic with a
contrast to the earlier resuit=3 [8,12], since there a dif- K-dependent power for 9K <1.

ferent criterion for the transition was appli€8,13].
It has been shown that the particular in_itial preparation Il. FORMULATION OF THE PROBLEM

plays a crucial role for the long-time behavior at zero tem-

perature. The factorized system-reservoir initial state for the It has been well established that the dissipative dynamics

expectation valuéo,(t)) leads to exponential decfy0,11,  of a particle in a double well potential can effectively be

whereas the symmetrized, equilibrium correlation function described at very low by the spin-boson modé¢l, 2]

with a correlated initial state decays algebraically a8 for

K <1, as shown for the spin-boson mogl&] and the related H=H.+ 2

1/r2 Ising and fermionic modelg7,8,12. The power 2 in the o<
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Ho=—%(Aoy+€o,)/2. 2 s=(s.), x={x.]. f dXEH J dx, | ©

Here the basis is formed by the two localized staRsand :

IL) of the double well, which are eigenstates @f with  The bares, acts in the Hilbert space of the two-state system
_eigenvaluesir .1 and— 1, respectively. The positign operator (TSS alone, whereas the dressed operStpacts in the full

IS q:a_‘TZ/Z with o= |R)(R| _f|L><Lr|{ The tyr;netl)lng operar-] system-plus-reservoir space. From the coordinate representa-
tor o, =|R)(L|+|L)(R| transfers the particle between the tion (8), we immediately see that the operationaf trans-

two wells with tunneling amplitudé\. The second term in : .
g b fers the particle from one localized state to the other and

Eqg. (2) describes an externally applied bias eneegyThe ; : ; .
efﬁ‘]ect of the thermal bath on )t/hepgystem’s dynarEr?igs is in_S|multaneously shifts each bath oscillator by the displace-

cluded in the spectral density ment + s, (“polaronic cloud”). In this senseg, generates
coherent tunneling between the two localized states and can
- 2 be called coherence operatd8]. The coherence correla-
J(w)= 5 E - CSw—w,). (3)  tions are then described by the equilibrium correlation func-
¢ e tion of o,

The important case of an Ohmic bath is described by C.(t) <~ 3 (0)) THo (O3(0)W,] (10
X\ =(0x(1) oy g= HLOoX(1) Oy sl

— —olo._ 2 —olwg
Jw)=rwe (2mhK/a%)we ’ @ whereW,=e #"/Tr{e” #"] is the equilibrium density ma-

where 7 is the viscosityK is the appropriate dimensionless {rix of the global system, and,(t) is the Heisenberg repre-
damping strength, and. is a cutoff for the bath modes. We sentation ofo, with respect to the untransformed Hamil-
are interested in the regime< w., in whichA andw. form  tonian (1) (cf. Ref.[19]). The associated response function

a renormalized frequency scdlg] xx(t)=(—=2/A)0(t)Im C,(t) describes the linear response of
B the system to a coherence inducing perturbaHkggToc?rx.
Ar=A(Awe) 71, ) It is convenient to consideC,(t) as the mean value of

(1) with respect to the “density matrix'W=o,(0)W,.

A quantity is called universal if it is a function &, alone, Switching to the Scidinger picture, Eq(10) becomes

i.e., there is no othew, dependence than given by E®).
Vice versa, any extra dependence ep is nonuniversal:
performing the scaling limitA, /w.—0 with A, fixed, this
contribution vanishes. Both the mean value®f and its |\ hare  the time-dependent “density matrix”W(t)

equilibrium autocorrelation function are univergal5]. On  _ Lo e
. ) i =exp(—iHt/A)W(0)exp{Ht/A) obeys the initial condition
the other hand, the expectation val(ie,(t)) is equipped W(0)=EXWB. Inserting the expressiof8) for o, into Eq.

1 = K -
with an overall factorA, /A= (A,/w:)" and therefore van (11) and performing the trace, we find th@(t) is the sum

ishes in the scaling limit14]. f the off.d | matrix el ;
Here we concentrate on the, equilibrium autocorrela- ot the ofi-diagonal matrix elements

tion function. As observed in Ref16] and explained in the
following, the equilibrium correlation function of the bawg
does not satisfy the above universality criterion. To over-_. ~ . L
come this sho?t/coming, we consider g modified tunnelinﬂmceaX acts also in the_ bath spaqéfj_)(t) is different fr_om
operator that takes into account the adiabatic displacement §f€ usual reduced density matrix as it appeag)s, e.g., irfhe
the bath modes during the tunneling process. The transfofOrrelation function[5]. We shall refer topi7(t) as the
mation to a basis of displaced harmonic oscillators states isShifted reduced density matrix'{SRDM). To be general,

accomplished by the polaron unitary transformatith we now give a discussion for a continuous variatyleand
return to the two-state system only in Sec. IV. We have

Cy(t)=Tr o, W(1)], (12)

Cu(O)=p 1 (D) +p (D). (12

U=exp{—io,Q/2h},
p(ar 0= | dxdar i+ SWDlaf x)

0=a2 mc:2 Pa=2 SuPa- (6)
e : =J dgdq/ dx; dxdx K(qs,x;+8,t;q; ,%;,0)
The set of displacements is given g,}={ac,/m,w?}.
The polaron transformed tunneling operaigy=Uo,U !

reads X(q; ,xi|W(0)|ai ,x{), (13

XK*(qs ,x,t;q/ ,x/,0)

ay=|R)(L|exp{—iQ/A}+|L)(RlexpiQ/h} (1) whereK(qs,X;+s.t;q; ,x;,0) is the usual Feynman propaga-
tor that may be expressed as a path integral. The matrix
=|R><L|f dx|X)(x—s|+H.c ) elements of the initial “density matrix’W(O)zTrXWB read

(ai , x|W(0)|q ,x{y=(—di.xi—s sgr(d;)|Wgla/ in’>(v

where we have introduced the compact notation 14)
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where the bath coordinates are also affected by the prepara- W(tg) = |q0><q0|®e_'BHR/Tr[e_BHR],

tion. Now, it remains to integrate out the shifted bath degrees

of freedom in the expressio(13). and let it evolve out of this state under the full Hamiltonian.
Then, ifty is sent to the infinite past, the system has reached

Ill. GENERAL INITIAL PREPARATIONS at time zero the correlated initial stag,x|W|q’,x'). With

The standard Feynman-Vernon approach that may bi'€S€ considerations, we may rewrite E20) as
used to eliminate the bath degrees of freedom relies on the L R .
assumption of a factorized system-bath initial state. For er- Jc(0f ¢ »£;di,0i,07;0,d",0";do,Go, to)

godic systems, it is possible to obtain a real-time description i

also for a thermal initial stat¢2]. This approach can be :f qu Dq’ ex;{—(ss[q]—ss[q’]) Fdla.q9’;s],
generalized to special classes of correlated initial states by h

introducing a preparation functiof20]. For the case of (21)

C,(t), the method in Ref[20] has to be reconsidered, since
the initial preparation also involves the bath. To proceed, wavhere S{q] is the action corresponding to the system

define a generalized preparation function Hamiltonian (2). The functional integrations are over all
Ao(ai,ay ;aaf;xi X x,x") by pathsq(t’) andq’(t’) that satisfy the constraints
(0 x| W(0)]a %) q(to)=do. G(07)=q, q(0*)=q, q(t)=qf.( )
22

:fdEdE'deY’AG(qi,q{;EE’:Xi,Xi’;TX') : a0 =T a0 —al ' (f—ql
q'(tg)=dg, 9'(07)=q’, q'(07)=q;, q'(t)=0q;.

x(a,XIWglg',x'). (15) (23
Comparing this form with Eq(14), we see that the prepara- All the effects of the bgth onto the system_’s dynamics are
tion function factorizes as captured by the generalized influence functional
No(0 .07 50,073%;.X] %X Fela.a";s]
=s(0,07 50,0 )NR(Xi X X X7),  (16) =f dx; dx,dx; dxdx’ dxodXgWr(Xo, X5 AR(Xi X/ :X,X")

where the system’s and reservoir's preparation functions are _
iven b , I .
J Y Xf DXJ’ Dx exr{g(SR,l[qu]_SR,l[X 9’ D1

Ns(9.9/50.9")=8(qi+a)d(g{ —a’), 17 (24)
Ar(Xi ,X{ X,X')= [ X —X—S sgn(g;)18(x{ —x’). (18  whereSg[x,q] is the action corresponding to the reservoir

and interaction terms in Eql). The pathsx(t’') andx’(t")
With the form(16), the evolution of the SRDML13) is given  are subject to the constraints

by
L - X(to)=Xo, X(07)=x, x(07)=x;, X(t)=X;+s,
p®(qy,q; ,t)=f dgidg/dadq’ Ig(q¢ ¢ ,t0;,0 ;0.9") (29
, — X'(to)=x5, X'(07)=x', x(07)=x;, X (t)=x;.
XNl 50.0), ag XX X0 (OD=x =

where the generalized propagating function reads Compared to the standard Feynman-Vernon influence func-

tional, there are two differences. First, the end point ofxthe

Jo(ds,9¢ ,t;0i,97 ;9,9") path is shifted by the displacemesiti.e., the bath does not

j— end up in a diagonal state at tinhe Second, the reservoir
Zf dx; dxdx; dxdx'K(qs,X;+5s,t;0;,X%; ,0) pathsx(t’) andx’(t') are discontinuous at time zero, de-
pending on the reservoir's preparation function
X(EYIWBIE’ X YK*(ap X5, 505,%,0) NR(XiH X7 5%X).
XNR(Xi X[ 1 %,X). (20) IV. EXACT FORMAL SOLUTION
For an ergodic system, the thermal density maiffg in Having obtained an explicit expression for the SRDM at

Eqg. (20) can be expressed as follows. Describe the globatime t for a general initial preparation, we can now write
system at a timet,<O by a factorized density matrix, down the exact formal solution for the coherence correla-
the system being in a position eigenstate, &gy, and the tionsC,(t), Eq.(12). Inserting the preparation functidf7)
reservoir being in thermal equilibrium, into the SRDM(19), we get
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C,H= lim X Js(as,— 0y, t;0;,0/,0%; C )= lim X Jg(gi,—q t:9;,9/,0%;

to——* q; 0/ ,0f to— = q;.q

—0;,9{,0;do,do.to), —0;,q{,07;do.d0.to). (3D

whereq; ,q{ ,q;=*a/2. Note that there is a jump in th® At this stage, it is important to note that the free propagators
path at time zero. Inserting the reservoir preparation functiofin the propagating function depend on the original paths
(18) into the influence functional24), the x’(t") path(26)  q(t’) andq’(t’). The concept of modified paths is only used
turns out continuous at timg =0, whereas the(t’) path  to express the generalized influence functional in the stan-
(25) is discontinuous. Because of the integration oyerthe  dard Feynman-Vernon form. For the evaluation of B&&{),

constraintg25) may equivalently be expressed as it is convenient to introduce the linear combinations
X(tg)=Xo, x(07)=x;, x(0")=x;+ssgnq), p(t)=[q(t)+q'(t)]/a,
(32
X(t)=X;+s sgridy). 27 &v=la—q'(H)]/a,

_Consider first the contributions 10,(t) ,W'th+inQf; IN" gescribing propagation along the diagonal of the density ma-
this case, the shifts in the path at timest =0 gndt =t tix and off-diagonal excursions, respectively. For the two-
are equal, a_nc_l thus we can ellmlr_1ate the_ shift at POSItVG;4te system, these paths are piecewise constant with jumps
:lcl;nes by defining modified reservoir coordinates accordlngat _timestj. As usm_JaI_, the _time intervalszj<t’<t2_j+1 in

which the system is in a diagonal state are cafiepburns
5 while the time intervalst,; ,<t’'<t, spent in an off-
X(t")=x(t")—s sgnq;)O(t"). (28)  diagonal state are referred tolalps. A sojourn is labeled by

n;= =1, depending on whether the system is in sRfor

The path(t') is continuous at’ =0 and obey(t)=Xx; . In LL. Similarly, §;= =1 describes a blip in which the system

the shifted coordinate, the bath is in a diagonal state at tim{$ in StateRL or LR. The lengths of the sojourn and blip
t. As the actionSg [x,q] appearing in the influence func- INtervals are denoted bgj=ty;.,—tp; and 7=t~ 151,
tional is quadratic both ix(t') and ing(t’) and bilinear in respectively. All paths that contribute to the correlation func-

the coupling, the second term in E@8) can be absorbed tion (31) start out from the initial sojourmy, at timet, and
into a modifiedq path, which is continuous at =0 end in the blip staté at timet. According to their behavior
’ ' at time zero, they can be divided into two groups. In group

-~ , , A, the system jumps at time zero from a sojourn to a blip
q(t’)=q(t’)—2q;6(t"). 29 state 6/ =—q; at time 0"). In groupB, the system hops at
-~ . ) ) time zero from a blip to a sojourn statg/(=q; at time 0").
Writing the influence functional in ternls of the paths p general path witm blips at negative anch blips at posi-
q'(t"),x’(t") and the modified pathg(t'),x(t"), the dis- tive times can be parametrized by
placements is completely eliminated from the description.

Thus, after integrating out the bath degrees of freedom, we n+m-1
end up with an influence functional that is of the standard )= D p[OH —t,)— Ot —ty.1)],
Feynman-Vernon form for a factorized initial state at time = . .
to, 33
n+m
Fdla,9':s sgnq)]1=F[a,q9']. (30) §(t'):;l §LO(t —ty_ 1) —O(t' —ty)],
All effects in o, induced by the polaronic cloud are in the With tonsom=t [21]. For group A, we have ty,,,=0
e ~ ’ n m . . 1 n [}
modified pathq(t’). o _ whereag,,= 0 for groupB. According to the boundary con-
Next, consider the contributions to E7) with g;=  ditions, the paths are subject to the constraints

—0gs. Now, it is not possible to end up with an influence
functional of the form(30) in which the shifts of the bath

: N En+m=&n+1= —mn,  (Qroup A), (34)
modes are fully absorbed into a modified pagitt’). In the neme e "
usual charge picturésee beloy, the caseg;=—qs corre- _ B
sponds to sequences of charges that violate overall neutrality. &n+m="¢én= 70, (group B). (39

As a resultA andw, cannot be combined to a function &f

alone. Instead, each contribution comes with an additionazeneric contributions to grouf and groupB are sketched
factor (A,/w.)* and therefore is nonuniversal. Thus in the in Fig. 1.

scaling limitA, /w.— 0, all contributions withg; = — g; van- Thus the correlation function is built up by two parts that
ish. correspond to these two different path classes. We have

With the above, the correlation function is now given by Cx(t)=C§(t)+Cf’(t) with
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&1 e &t S(t)= 2K In[(% Bw/m)sink( t/h B)], (42)

t t n- =0 2 n+2m — 3
o 2541 2n+2 R(t)= 7K sgnt). (42

&l [ | [Enem) Because of the fornB3), the velocities in Eq(40) consist of
el del Jeal a series of delta functions centered at the flip times. This
o tan =0 tantam =1 suggests to regard the blip and sojourn paths as sequences of

FIG. 1. Path contributions to groud (top) and groupB (bot- charges: blip charges interact with each other through the

tom). The steps represent blips of either sign, and sojourns argerneIS(t)., while the SQjOlﬂm charges inter_act with the blip
indicated by the baseline. charges viaR(t). Substituting the path&33) into Eg. (40),

the influence functional takes the form

ChO= lm 3 I(EGE0 7= £0770.t0), Fam=GnmHnm: (43
t0—>—oo
(36)  The factorG,, ,, contains all the interblip and intrablip inter-

CBt)= lim > Jo(&t7=£07—£07:70.to). actions,

t0—>—oo f

n+m n+m j—1
The path sum is over all sequences of blips and sojourns and Gn,m:eXF{ - 121 Spj -1~ 122 121 & gkAj,k}a (44)
implies time-ordered integration over the jump times. We

introduce the compact notation
P A =S x-1TS 14— Sjx—Sj-1.x-1, (49

t t teriv1 it
f DkJ{tj}:J dtkﬂﬂj o dtkH---f . dty.» where S, ;=S(t,—ty). The sojourn-blip interactions are
to 0 0 0 captured by the phase factdr, ,,. With the form(42), each
sojourn only interacts with the subsequent blip,

0 t,
xﬁodtk'--ﬁodtl. 37 -

- _ Hn,m=exr{in > 77k§k+1}- (46)
Herek and| represent the number of flips in the time re- k=0

gimesty<t’'<0 and O<t’'<t, respectively. For groupg\, o ) ot om

we havek=2n,l=2m-2, whereas for group k=2n—1 Substituting Eq.(41) into the term A®""“"G, ,,, the
and |=2m—1. Each transition in Eq(37) comes with a qu?p;tlljlei A and o are combined into a factor
factor =iA/2. There are two additional transitions at time A% 20""™, whereA, is the renormalized tunneling fre-
zero, t,.;=0, and at timet, t,,,.,=t. These two hops, duency, Eq(5). The autocorrelation function of the bawg
however, come without a factatiA/2 since they are not depends on the standard influence functio@—(46). In
dynamical. The jump at time zero is enforced by the operathis _case, however, there appears the quantity

~ 2n+2m-2 H
tion of o,, whereas the jump at time is introduced for A Gy, m because tha factors of the two blip charges

conveniencect. Ref. [21]). The amplitude to stay in a so- at time zero and time are missing. Therefore the autocor-
journ is unity While :[he ar.nplitude to stay in bl is given relation function of the bare, comes with an overall factor

2 2_ 2K . - - . -
by exp{e& 7). Thus, a full path gives for both groups a factor AfIA“=(A,/w¢)7". Thus itis nonuniversal in the sense dis-
cussed above.

— oé(—A2H" MDD (39 Now return to the correlation functio@,(t), which de-
pends on the generalized influence functiafgl As shown
with the bias term above, this can be expressed in the standard fdnif we

hm substitute the modified paths
D.. = i | ~
nm eXp('ﬁZl gm) 39 H) =)~ O(1) -0t 1],
. . - (47)
Before discussing the modifications due to the polaron T =5t — Ot -0t —1)].
transformation, consider the standard influence functional.
Performing integrations by parts, it takes the fdr2 The effects of the subtractions in E4.7) are directly seen in
o+ o _ _ the charge picture. Taking into account the constrai&
]:[n,g]zexpl'f dt’f dt’[&(t")S(t" —t") &(t7) and(35), one gets the following changes: In the path’),
to to the two blip charges at timé$=0 andt’ =t are canceled. In
o I the pathz(t’), the sojourn charge originally located at time
HIE)RE =) n(t")] 1, (40 t'=0 is moved to tima’ =t. It turns out that the influence
functionals for the paths of grouf and groupB are differ-
where the kernel§(t) andR(t) are the real and imaginary €nt. We write
parts of the second integral of the bath correlation function. A A LA 8 -
In the limit w:t>1, we haveg2] ]:n,m:Gn,mHn,m! }—n,m:Gn,mHn,m' (48)
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The blip-interaction factorss)’S differ from the standard
G, m by the absence of the two blip chargesta+0 and
t'=t. For groupA, this is

n+m n+mj—-1
A A
Gn,m:eXF{_ 2 52j,21—1_z > §j§k/\j,k],
j=1 j=2 k=1
j#n+1

(49

where/\ﬁk describes the interblip correlations for the modi-
fied sequence of charges.jlk#n+1 and#n+m, Aﬁk is
again given by Eq(45). In all other cases, the interactions of
the missing charges have to be dropped in Ef). For
instance, for j=n+1, we have Aﬁﬂykzszﬁz,z(,l
—Son+2.x- Similarly, we obtain for grouB

n+m n+m j—1
GE,m:exl{ - 121 Syj0-1— ]_22 kzl gjgkAEk , (50
]J#n

with analogous modifications iAjEfk for j,k=n andn+m.
For instance, we have\},=S;,_1x—Syn-1.x-1. The
modified phase factord|, ,, take the form

Hﬁ'mzex;{
n+m—1

B _ .

Hn,m_exf{l"TK IZO [7éks1t m(énv1—énsm]|-

k#n

n+m-—1

i7K Y i
k=0
k#n

(51)

Thus each sojourn interacts with the subsequent blip except

for sojournn. For groupA, the sojourm is effectively non-
interacting, whereas for group, it effectively interacts with
both blipn and blipn+m.

At this point, let us briefly reflect what we have gained so
far. First of all, since the sequence of the remaining 2
+2m-—2 blip charges is neutral and comes with a factor
A?20+m=1) " the quantitiesA and w, are combined into a

factor AZ~20(M*M=1) " Thys, thes, autocorrelation func-

tion turns out to be universal. There is, however, an essential

difference between the two groups. For grdupthe charges
in the negative and positive time branches are neutral indi
vidually. For groupB, there is an excess chargel in each

branch, and only the combined arrangement is neutral again.

Since the asymptotic decay of equilibrium correlation func-
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Jo(&E; =0 —£07; 10,t0)
*© *© AZ n+m-1
-3 3 (-5
n=1m=1
t
X D2n—1,2n—1{tj}2 GE,mDn,mE Hg,m'
to {¢)® {n;}®
(53

The summation is over alg;,7;==*1. The superscripts
{---}* and{---}B indicate the constraint&4) and (35) with
&nem= &, respectively. Using Eq$36), C,(t) is obtained. It
is now straightforward to perform the summations and to
use symmetry relations under excharigeg—{—§&;}. Tak-
ing the limit t,— — o, the correlation function becomes in-
dependent of the initial valueg. In the end, we find for the
symmetrized correlation functid®,(t) = Re C,(t) and the re-
sponse functiory,(t) = (—2/4) O (t)Im C,(t) the expressions

tions crucially depends on the interactions between the nega-

tive and positive time branches, we should expect differen
behaviors for grougA and groupB.

Collecting the various results, we obtain explicit expres-
sions for the propagating functions of groApand groupB
in Eq. (36),

Jo(&,4,€,07;7=—£,07;70,t0)

* * AZ n+m-—1
-3, 3 -5
n=0 m=1
t
X ; D2n,2m72{tj}{z}A G'r(?,mDn,m ﬁ,m’ (52)
0 tfl

H
{n}A

1 & — t
St)=5 2 (-aHm f Doan-2iti} 2, GomDom -
m=1 - (g
(54)
Si==2 > (~A)""Isint(7K)
n=1m=2
t
Xf_mpzn—l,zm—l{tj}
X {;} §l§n+mGE,mD§1Tn)1’ (55)
gn:§n+1J:7§n+m
A 1 o< A2\yn+m—1
Xa)=7 2 2 (=AY tan(7K)
n=1 m=1
t
Xf DZn,Zm—Z{tj}z §1§n+mGlr/;\,mD£:nz’
- {'fj}A
(56)
B 1 < c A2yn+m—1
Xi)=7 2 X (=A™ ™ Han(aK)
n=1m=1
t t
XJ D2n—1,2m—1{tj}2 fng,mDEani
- {g)®
X{Sinz(WK)§n+l+COSZ(WK)gn+m}- (57
Here we have introducef?= AZcosK)/2 and
n+m
DE]T,%ZC05< 6]_21 fj Tj) . (58)

Equations(54)—(58) are exact formal series expansions for
the symmetrized equilibrium correlation functi&(t) and
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the response functiog,(t). Despite their formidable appear- -—--{F-----

ance, we can obtain exact results in certain limits. This is to 0 ¢

discussed in the remainder of this work. For the subsequent

analysis, it is convenient to switch from integrations over the FIG. 2. The diagram describir§(t). The full and dashed lines

flip times, Eq.(37), to integrations over blip lengths and  represent sojourns and blips, respectively. The empty box repre-

sojourn lengths; . sents the insertion of a CS form factor within the blip interval. The
bullets mark transitions which are free of bath correlations because

V. THE CASE K=% of the modified influence functional.

For the valuek = 3, the above series f@,(t) and y,(t) &=—n where it stays until timet, resulting in a factor
can be summed in analytical form using the concept of colcos(t). The blip of lengtht is decorated with a CS form
lapsed blips and collapsed sojourf. Putting K=3—«  factor. Piecing the various components together, we find the
with k<1, the phase factor cosK)~m« vanishes in the damped oscillatory behavior
limit k—0. In order to have a finite contribution fé¢= 3,
each factor cosfK) has to be compensated by acXgingu- Sx(t)zsf(t)=cos( et)e "2, (60
larity arising from the “short-distance” singularity of the
breathing mode integral of a dipol@lip or sojourn with  The contributions t&(t) are sketched diagrammatically in

interactione™ X7~ (w.7) "(*"29). Thus we have Fig. 2. Since only collapsed sojourns contributeSét) and
) the short-distance behavior of the pair interaction is indepen-
I(K= E) = lim Azcos{wK)j dTe—S(T):z A_E y. dent of temperature, the expressi@®) is valid at any tem-
2] «_ap 0 2 w perature.
(59) Consider next the response function. The contribution of

group A is sketched in Fig. 3. In the negative-time branch,
We shall refer to an expression of the fo®9) as a col- the initial sojourn is followed by an extended blip and an
lapsed dipole. Since a collapsed dipole has zero dipole maxtended sojourn state. Both of them are equipped with a CS
ment, it does not interact with other charges. Further, it isand CB form factor, respectively. At time zero, the system
insensitive to a symmetric bias factor. In contrast, an oddhops back into a blip state and stays there until ttm&he
bias factor in Eq(59) prevents a dipole from collapsing, and extended blip is again decorated with a CS form factor. In
combined with a factor cosf), this term vanishes as mathematical terms, we have for0

K—1.
A blip or a sojourn becomes extended when the &&3( A 2 . [
factor and the short-distance singularity are absent. Within Xx(t)= 7 A%sin(et)e™” jo drds
an extended blip of length the system may make any num-
ber of visits of duration zero to a sojourn and then returns to X sin(er)e” XNe " r72g=7s, (61)

the same blip. Mathematically, this is described by the inser-

tion of a grand-canonical ensemble of non@tce/gacging ColNow, as shown in Ref[5], the double integral times the
lapsed sojournéCS), yielding a CS form factoe™ *<. Like-  factor A2 is just P..= (o ,(t—)). In the end, we find
wise, within a sojourn of length, the system may make any

number of visits of duration zero to a blip state. This is X2 ()= (2/h)P.sin(et)e™ "2, (62)
represented by a grand-canonical ensemble of noninteracting

collapsed blipg(CB). Since the system can return to either 2
sojourn state, there is a multiplicity factor 2, yielding a CB P,=—Im ¢
form factore™ ",

An extended sojourn, sasi, remains free of insertions _ . ) ) )
only if the subsequent blip is weighted with an unconstrainedvherey(z) is Euler's digamma function. Thus we find again
factor &. In this case, thd¢;} summation leads to can- exponential decay, resultlng from _expongnnal suppression
cellations among the interactions stretching over the exfactors due to collapsed blips or sojourns in each interval.

tended sojourn, and thus it remains bare. It turns out that this

is a general rule also fa€+ 1, referred to as thérule in the

following. For the correlation function&5)—(57), e.g., the - J—.—. eI F----=
initial sojourn starting at, remains bare due to the factéy _|_

in the exact formal expressions. There are no other bare in-

tervals in the negative-time branch. Thus, the limit |
to— —o0 is well behaved. -{F- -{}--
Based on these concepts, we now analyze the various con- |

tributions. Consider first the symmetrized correlation func-

tion. Assigning the cosfK) factors to the collapsing dipoles to 0 t

as in Eq.(59), there_ is %ne cos:(l_<) factqr left in E_q.(55). FIG. 3. The diagrams fox’(t) (top) and x2(t) (bottom. The
Thus the contributionS/(t) vanishes linearly withx as || box represents the insertion of a CB form factor. The other
K—3. In S{(t), the system dwells in the initial sojourn state symbols are analogous to Fig. 2. The upward and downward spikes
7 until time zero. At this time, it hops into the blip state symbolize the remaining charges.

fiy _ﬁe)

2 ZakeT  2akgT (63
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Now we turn to the contributions of groug. It is imme-  Taking the Fourier transform &,(t) and of y,(t), we find
diately clear that the part Qf)?(t) resulting from the second for the spectral functio,(w) and the absorptive part of the
term in the curly bracket of E¢57) vanishes ax? in the ~ dynamical coherence susceptibiligy(w):
limit k—0, whereas the first term .is nonzero in this .Iimit. 20t w24 &2
Here, the system hops from the initial sojourn into a blip at a S(w)=1y Y w e
negative time— r and stays there until time zero, where it (Y? 14+ w°+ €2)°— A€’ w?’
returns to a sojourn state. At tingeit hops again into a blip (71
state and dwells in this state until tinte Again, each blip =Lt ho Y4+ w®+ €
interval is decorated with a CS form factor, as discussed ~Xx(®)=7 @n 2kgT) (YI4+ w?+ €?)°—4€°0?”
above. Because of the factég, ; in Eq. (57), however, the
extended sojourn in the positive time branch is free of col-This confirms that the FDT is satisfied. Finally, the real part
lapsed blips. The interacting dipole has lengths and in-  xx(w) of the dynamical susceptibility readse pute=0 for
troduces correlations between the negative and positive timgimplicity)
branchegsee Fig. 3. Thus we have

1

, Y
2 )= o e aa?

Ac (= t
Brgy— —  y(t+7-8)/24—S(7+5s)
Xx(t) 7 JO drfodse e

1 N hy 1 i hw
2t amet) W2 2T
Introducing the dipole length+s as a new integration vari- (72

able, performing the other integrations, and combining th
resulting expression with E¢62), we obtain

X cof e(t—7—s)]. 64) XR@{‘/’

Ihe linear static susceptibility (9= x/(w—0) diverges
logarithmically asT—0.

xx(1) = (2/)[sin(et) F(t) + cog et) F ()] (65) One final remark on the cadé=3 is appropriate. The
correlation functions can also be calculated in a fermionic
with the functions representation by exploiting the equivalence of the spin-
5 boson model foK = 3 with the Toulouse limit of the aniso-
I 8P e —ylt=ri2 am Yt D2 tropic Kondo or resonance level modg]. One finds that the
Fa() 2y fo dre sin(er)(e e ), o correlation function in the resonance level model directly

(66)  corresponds to the, correlation function of the spin-boson
model [19]. The investigation of the spin-boson model is

2 . L .
F(t)= A_ J dre S7cog er)(e” Yt=rli2_ o= He+ 12y convenient when we depart from the particular ckses.
2 - .
2y Jo

(67) VI. THE CASE K=3—«

For asymptotic time$>1/y, we find from Eq.(65) at zero A. Expansion around K = 3

temperature In the previous section, we have solved the dése; in

8 21 analytic form by using the concept of collapsed blips and

collapsed sojourns. Let us now consider the regie 3
— k with k<1 and perform an expansion around the solution
of the correlation function foK =3. For finite «, a dipole is

The algebraic decay law arises from the contribution Ofactually no longer collapsed. The basic idea now is to de-

group B'. Because o_f the absence of collgpsed blips in thQ/elop a k expansion by systematically taking into account
sojourn intervals, this mteryal gets effec_nvely veryllarge, the finite lengths of the blips and sojourns. To put up a gen-
s~t for t>1/y. The 1 law in Eq. (68) is slrggly the signa- o5 computation scheme, it is essential to split the breathing
ture of the bare intradipole interactioe, >\"Vec1t for K mode integrall (K) given in Eq.(59) into a contribution

1 A . .
=5. The algebraic law af=0 is not only of academic . ~

2 III - -
interest, since it is also valid at low but finite temperatures inl%(K) from the short-length interval 97<1/y and a re

the intermediate time regimefi<t<# A. In the asymptotic sidual corlfributiori »(K) from lengths7>1/y. The inverse
limit t># B> 1/y, we find exponential decay, time scaley is self-consistently determined by the short-time
partl;(K). We have

Xx()= o PrAE (68)

B 16 2 1 2 69) )
Xx(V)= 57— 5 ——> e ", 1 ~ 1/ 1 we |
hy y"+4e hp - kl=%=A2 | P et

| | I, K 5 TK|=Y Ak . dT(wCT)l_ZK y ]
where v,=27/#3 is the lowest bosonic Matsubara fre- (73

quency.

Since we have calculated the expressiéB® and (650  Where the factormk is the remnant of the cosK) phase
independently, we are now in a position to verify whetherfactor. The frequency is the effective inverse time scale of
they are consistent with the fluctuation-dissipation theoremthe problem. The short-time pdr(K), representing either a

collapsed blip or a collapsed sojourn, can be treated exactly
Sy(w) =% cothh Bwl2) x( (o). (70 in the same manner as described in the previous section. That
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0 . o o insertions. At timest>1/y, the length of this interval is
e N N therefore effectivelyt. Employing argument3), we see that

the contribution)(fl(t) decays ag@ Vot ~(1724) This law
- - olm is generally va_llid, only the_: prefactor depends on the number
of extended dipoles considered.
_ ) _ Starting with orderx?, there is also a contribution from
FIG. 4. Insertion of extended dlpOleS aCCOI’dIng to r(lﬂh the second term in the Curly brackets of H57)! called
. ' . o sz(t). The diagrams are as qul(t), apart from the cru-
is, all possible arrangements of collapsed dipoles within ajg| gifference that the first sojourn in the positive time
extended sojourn and blip of lengstand, respectively, add  pranch is dressed. This is due to the absence of the factor
up to a CB form factoe™?* and CS form factoe™?". The ¢ .. in st(t)- Thus, according to rulé2), XXBZ('() decays
strategy is then completed by developing a systematigynonentially.
scheme to calculate the contributions from the extended blip

and sojourn intervalsz; ,sj>1/3/. Since the leading contri- C. Symmetrized correlation function S,(t)
butionl,(K) is of orderk, it is natural to set up an expansion . A ) )
of the correlation function in the number of extended di- Consider firstS,(t), Eq. (54), which has dynamics only
poles. Clearly, this is not a systematic expansion isince  in the positive time branch. Employing ru(@), we havem
every extended dipole also contributes higher-order correc€xtended sojourns in ordet™, and each of the blip and
tions in x. However, the strategy will allow one to extract the Sojourn intervals is dressed. Thug{(t) decays exponen-
actual long-time behavior of the correlation function. To per-tially on the time scale /.
form the analysis, it is useful to introduce a diagrammatic As emphasized in the previous section, the leading con-
picture. A generic contribution of orde¢™ is obtained by tribution to SZ(t) is of orderx. This term is found to be
adding m extended dipoles to the respective diagram for
K=3. Its structure and asymptotic behavior are essentially B A? (= t —s
determined by the following rules, which are drawn from the S(=- K J; dTLds{e -1}
exact formal expressions. _
(1) Insertion of an extended sojourn into a dressed blip x e~ YT 7792g=S+Scod e(t— 7—5)]. (74)
interval leads to the diagram of Fig.(fbp), whereas inser-
tion of an extended blip into a dressed sojourn interval isThe reason for the subtraction in the curly brackets is the
diagrammatically represented in Fig.(dottom. missing of diagrams without any insertions in the sojourn
(2) An extended dipole with insertion of a CB or CS form intervals. There is always at least one collapsed blip due to

factor has an effective length of orderland therefore can- the constraint in th¢ summation of expressiofs5). Intro-

not produce algebraic decay of the correlation function. ~ ducing the lengthr+s as a new integration variable, the
(3) An extended dipole that is free of CB and CS form other integrations can be performed. With the definition

factors has a length>1/y. Therefore, it is sensitive to the A2 [ - -
unscreened dipole interactien XV 72K and its length is ~ F3(t)= —= f dre Ssin(er) (e M- g ¥+ D2),
eventually limited by the overall length 2y Jo

These rules are in correspondence with the alfoude. (75)
We will now apply them to the symmetrized correlation

function S(t) and to the response functiog(t). and with v replaced byy in the expressiori67) for F,(t),

we find

B. Response functiony,(t) SE(t) — WK[ [coq et)F,(t) +sin(et)F5(t)]

We start the discussion of the response function by con-
sidering the path contributions of groép Eq.(56). In order A2 [ [t -

«™, the diagram fory2(t), Fig. 3 (top), is supplemented by 5 (f drre S7e YT Vcog e(t—1)]

m extended dipoles. They can be arbitrarily distributed 0

among the negative and positive time branches using(tule % -

(cf. Fig. 4. As a result, each intervgexcept for the first +tJ dTe_S(T)e_Y(TH)IZCOE{G(t—T)])J- (76)
sojourn is dressed by a CB or CS form factor. Thus, using !

argument ZXQ(t) decays exponentially.

Consider next the contribution xf(t) from the first term
in the curly brackets of Eq(57), referred to aqfl(t). In
order k™, the diagram in Fig. 3bottom) for x2(t) is modi- 5 % 1)\ 172«
fied as follows. There are insertions mfextended sojourns, Sc(t) =4k 21462 (Tt) :
which can be arbitrarily distributed among the two blip in- 4 4
tervals displayedirule (1)]. Each of them is again confined to The origin of the algebraic decay far+ 0 is the subtraction
a length of order 1. Due to the factoi, ., in Eq. (57), term in the curly brackets in Eq74). The analysis shows
however, the initial sojourn at positive times remains free ofthat the subtraction also appears in all higher orderg.in

The dominating contribution far>1/y comes from the first
line in Eq.(76), yielding

(77
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Thus the asymptotic behavior (*~2%) is generally valid for  tive time branch. The power of the algebraic interaction is
k#0. For k—0, the prefactor of the algebraic decay law independent of the coupling strength and is 2 for Ohmic

vanishes and the decay is exponenfi@l Eg. (60)]. dissipation.
Our findings are consistent with the fluctuation-
VII. LONG-TIME BEHAVIOR FOR GENERAL K<1 dissipation theorem, E§470). Upon Fourier transforming Eq.

(79), we gety(w—0)xsgnw)|w]|® ! for 0<K<1. Using

From the structure of the various contributions forthe FDT relation(70) for T=0, we obtainS,(w—0), and
K= 3—«, we can draw conclusions for the long-time behav-transforming back to time, we find consistency with the law
ior of the correlation functions for generdl<<1. ForK sub-  (78) for S (t). As a by-product, we obtain a useful relation
stantially different from;, the modifications concern the CB directly connecting the prefactors of the expressiaids and
and CS form factors inserted in a given interval. Instead 0{79),
collapsed noninteracting blips and sojourns, we now have
extended interacting dipoles and it is no longer possible to S (t)=(Al2)cot( 7K) x4 (1), t>1/A,. (82
perform the grand-canonical sum in analytic form. However,
according to the rule, the sequences of charges are grouped{] lowest order ink, this relation is confirmed by the results
into clusters that are separated by bare sojourns. Because 68) and (77). The caseK =3 is special, since the prefactor
the alternating sum of the charges within a cluster, the lengtlf the 1t law for S,(t) vanishes according to the relation
of a cluster is effectively of order A}, whereA, is the (82. This is in agreement with the resiit7) obtained from
renormalized frequenc{b). the direct computation o§,(t).

With this being the only essential modification, the = The asymptotic decay lar9) leads to a different behav-
asymptotic behaviors of the various contributions to the corior for the linear (zero biag static susceptibility
relation function at times>1/A, emerge as follows. In X(X°)=f5°dtxx(t) for K below and above. For K<3, the
group A, there is a single neutral cluster surrounding theslow decay ofy,(t) implies that the linear static susceptibil-
origin of the time axis. Hence, bot®}(t) and x4 (t) decay ity diverges algebraicallyy(®« T~ asT—0. This indi-
exponentially. In grouB, we have a charged cluster in each cates that the system responds to a coherence inducing per-
time branch, satisfying overall neutrality. Since in bothtyrpation <o, in a nonlinear manner. Interestingly, the
branches the initial sojourn is free of insertions, the two clus-regime K<1 coincides with the coherence regime for the
ters are near the origin and nerrespectively, and they population(o,(t)) at zero biag10,15. ForK>%, the decay
interact with the unscreened charge-charge interactiogf y. (t) is sufficiently fast so that the linear static suscepti-
e~ SWxct™2K [22]. This interaction directly determines the jlity is finite at T=0. This corresponds to the incoherent
long-time behavior o&7(t) and x;(t). The contributions of  regime for(o,(t)) at zero bias. The transition from nonlinear
group B predominate over the exponential contributions ofto linear response & =3 thus reflects the intrinsic coher-
groupA for t>1/A,. Thus we have asymptotically ence properties of the system. These properties of the static
susceptibility have been confirmed numerically in Réb].

In conclusion, we have studied within a real-time ap-
proach the equilibrium correlation function of the polaron-
dressed tunneling or coherence operator in the dissipative
Yy(t)oce™ SWoct 2K, (79  two-state system. This_qqant'ity turns out to be universal in
the scaling limit. The elimination of the bath modes leads to
a modified influence functional that can be recast into the
hstandard form at the expense of introducing modified system
paths. We have obtained the exact formal expressions for the
coherence correlations for arbitrary damping strerigttand
we have presented analytic results for the particular case
K=3 and for the narrow regim&=3%— x with k<1. The
long-time behavior is found to bet™2¢ for generalkK <1,
reflecting the loss of coherence with increasing damping
strength. Generally, an algebraic decay law reveals that the
initial state of the global system is correlated. In a charge
picture, the particular decayt~?¥ expresses the interaction
between two clusters with an excess charge of opposite sign.
Since they are embedded in the vacu@@mnule), the interac-
tion is unscreened.

1
Sc(t)=e” et "2, K# =, (78)

Thus, the, autocorrelation function a&f=0 decays with a
power law. The power depends on the damping strengt
Again, theT=0 decay lawq78) and (79) hold also at very
low temperatures in the intermediate time regima, ¥t
<A B. In the asymptotic limit># 8> 1/A,, the correlation
functions show exponential decay,

St)xe M,y (e K, (80)

where the decay rate I§ times the lowest bosonic Matsub-
ara frequencw,=2m/h 3.

Let us now put the decay la{8) in perspective with the
generalized Shiba relation for tlg correlation functiorf6—
8,12]. In the regimet>1/A,, this relation is expressed as
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