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Coherence correlations in the dissipative two-state system
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We study the dynamical equilibrium correlation function of the polaron-dressed tunneling operator in the
dissipative two-state system. Unlike the position operator, this coherence operator acts in the full system-plus-
reservoir space. We calculate the relevant modified influence functional and present the exact formal expres-
sion for the coherence correlations in the form of a series in the number of tunneling events. For an Ohmic
spectral density with the particular damping strengthK5

1
2 , the series is summed in analytic form for all times

and for arbitrary values of temperature and bias. Using a diagrammatic approach, we find the long-time
dynamics in the regimeK,1. In general, the coherence correlations decay algebraically ast22K at T50. This
implies that the linear static susceptibility diverges forK< 1

2 asT→0, whereas it stays finite forK.
1
2 in this

limit. The qualitative differences with respect to the asymptotic behavior of the position correlations are
explained.@S1063-651X~98!06910-4#

PACS number~s!: 05.30.2d, 05.40.1j, 73.40.Gk
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I. INTRODUCTION

The simplest model that allows one to study the interp
of tunneling and dissipation is the spin-boson model@1,2#.
Despite its simplicity, it exhibits generic features of ma
complex systems and has found widespread application
physics and chemistry. It has been adopted to describe
verse systems, like the tunneling of atoms between a sur
and the tip of an atomic-force microscope@3#, or the dynam-
ics of the trapped flux in a quantum interference device@4#,
to mention a few.

For Ohmic dissipation, the spin-boson model shows
transition between coherent and incoherent tunneling wh
the location of the transition depends on the damp
strength and on the bias@2#. Most investigations have bee
done for the nonequilibrium expectation value^sz(t)&, rep-
resenting the population difference between the two loc
ized states, and for thesz autocorrelation function, describ
ing position or population correlations@5,6#. For the latter
quantity, the analogy with the Kondo model and the 1r 2

Ising model has been utilized@7–9# in numerical computa-
tions. For Ohmic damping and zero temperature and b
^sz(t)& shows a transition between damped oscillations
incoherent relaxation exactly atK5 1

2 @10#. Recently, it has
been argued@11# that the quality factor of the oscillation i
exactly given byQ5cot@pK/2(12K)#, which again gives
K5 1

2 for the transition. For the antisymmetrizedsz autocor-
relation function, the same quality factor and thus the sa
transition point were found numerically@9#. This is not in
contrast to the earlier resultK5 1

3 @8,12#, since there a dif-
ferent criterion for the transition was applied@9,13#.

It has been shown that the particular initial preparat
plays a crucial role for the long-time behavior at zero te
perature. The factorized system-reservoir initial state for
expectation valuêsz(t)& leads to exponential decay@10,11#,
whereas the symmetrizedsz equilibrium correlation function
with a correlated initial state decays algebraically as 1/t2 for
K,1, as shown for the spin-boson model@6# and the related
1/r 2 Ising and fermionic models@7,8,12#. The power 2 in the
PRE 581063-651X/98/58~4!/4288~11!/$15.00
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algebraic decay law is a signature of Ohmic dissipation.
Recently, focus has been put on expectation values@14#

and equilibrium correlations@15# connected with the tunnel
ing operatorsx . The expectation valuêsx(t)& and the equi-
librium autocorrelation function ofsx have been found to be
nonuniversal, i.e., they vanish in the scaling limit@14,16#.
Here, we study the equilibrium autocorrelation function o
polaron-dressed tunneling operators̃x , which includes the
adiabatic dynamics of the bath modes@1,17#. This function is
universal and measures correlations of the off-diagonal
ments ~coherences! of the density matrix. We present th
exact formal solution for the coherence correlations in
form of a series in the number of tunneling events. We th
analyze the resulting expression in various limits. In partic
lar, we work out the differences in the asymptotic dec
between the position correlations and the coherence cor
tions. Our analytical real-time approach is complementary
the recent imaginary-time numerical studies in Ref.@15#.

In Sec. II, we formulate the problem and introduce t
correlation functionCx(t) of the coherence operators̃x .
Since this operator acts in both the system and bath sp
the elimination of the bath modes has to be reconside
The relevant considerations leading to a modified influe
functional are given in Sec. III. These results are used in S
IV to determine exact formal expressions forCx(t). In Sec.
V, we present the analytical solution forCx(t) for the special
value K5 1

2 . Section VI is devoted to the regimeK5 1
2 2k

with k!1. Finally, in Sec. VII we show that the asymptot
decay of Cx(t) at zero temperature is algebraic with
K-dependent power for 0,K,1.

II. FORMULATION OF THE PROBLEM

It has been well established that the dissipative dynam
of a particle in a double well potential can effectively b
described at very lowT by the spin-boson model@1,2#

H5H01(
a

F pa
2

2ma
1

1

2
mava

2 S xa2
ca

mava
2

a

2
szD 2G , ~1!
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H052\~Dsx1esz!/2. ~2!

Here the basis is formed by the two localized statesuR& and
uL& of the double well, which are eigenstates ofsz with
eigenvalues11 and21, respectively. The position operato
is q5asz/2 with sz5uR&^Ru2uL&^Lu. The tunneling opera-
tor sx5uR&^Lu1uL&^Ru transfers the particle between th
two wells with tunneling amplitudeD. The second term in
Eq. ~2! describes an externally applied bias energye. The
effect of the thermal bath on the system’s dynamics is
cluded in the spectral density

J~v!5
p

2 (
a

ca
2

mava
d~v2va!. ~3!

The important case of an Ohmic bath is described by

J~v!5hve2v/vc5~2p\K/a2!ve2v/vc, ~4!

whereh is the viscosity,K is the appropriate dimensionles
damping strength, andvc is a cutoff for the bath modes. W
are interested in the regimeD!vc , in whichD andvc form
a renormalized frequency scale@1#

D r5D~D/vc!
K/~12K !. ~5!

A quantity is called universal if it is a function ofD r alone,
i.e., there is no othervc dependence than given by Eq.~5!.
Vice versa, any extra dependence onvc is nonuniversal:
performing the scaling limitD r /vc→0 with D r fixed, this
contribution vanishes. Both the mean value ofsz and its
equilibrium autocorrelation function are universal@1,5#. On
the other hand, the expectation value^sx(t)& is equipped
with an overall factorD r /D5(D r /vc)

K and therefore van-
ishes in the scaling limit@14#.

Here we concentrate on thesx equilibrium autocorrela-
tion function. As observed in Ref.@16# and explained in the
following, the equilibrium correlation function of the baresx
does not satisfy the above universality criterion. To ov
come this shortcoming, we consider a modified tunnel
operator that takes into account the adiabatic displaceme
the bath modes during the tunneling process. The trans
mation to a basis of displaced harmonic oscillators state
accomplished by the polaron unitary transformation@1#

U5exp$2 iszV/2\%,

V5a(
a

ca

mava
2 pa5(

a
sapa . ~6!

The set of displacements is given by$sa%[$aca /mava
2%.

The polaron transformed tunneling operators̃x5UsxU
21

reads

s̃x5uR&^Luexp$2 iV/\%1uL&^Ruexp$ iV/\% ~7!

5uR&^Lu E dxux&^x2su1H.c., ~8!

where we have introduced the compact notation
-

-
g
of
r-
is

s[$sa%, x[$xa%, E dx[)
a

E dxa . ~9!

The baresx acts in the Hilbert space of the two-state syste
~TSS! alone, whereas the dressed operators̃x acts in the full
system-plus-reservoir space. From the coordinate represe
tion ~8!, we immediately see that the operation ofs̃x trans-
fers the particle from one localized state to the other a
simultaneously shifts each bath oscillator by the displa
ment 6sa ~‘‘polaronic cloud’’!. In this sense,s̃x generates
coherent tunneling between the two localized states and
be called coherence operator@18#. The coherence correla
tions are then described by the equilibrium correlation fu
tion of s̃x ,

Cx~ t !5^s̃x~ t !s̃x~0!&b5Tr@s̃x~ t !s̃x~0!Wb#, ~10!

whereWb5e2bH/Tr@e2bH# is the equilibrium density ma-
trix of the global system, ands̃x(t) is the Heisenberg repre
sentation ofs̃x with respect to the untransformed Ham
tonian ~1! ~cf. Ref. @19#!. The associated response functio
xx(t)5(22/\)Q(t)Im Cx(t) describes the linear response
the system to a coherence inducing perturbationHpert}s̃x .

It is convenient to considerCx(t) as the mean value o
s̃x(t) with respect to the ‘‘density matrix’’W5s̃x(0)Wb .
Switching to the Schro¨dinger picture, Eq.~10! becomes

Cx~ t !5Tr@s̃xW~ t !#, ~11!

where the time-dependent ‘‘density matrix’’W(t)
5exp(2iHt/\)W(0)exp(iHt/\) obeys the initial condition
W(0)5s̃xWb . Inserting the expression~8! for s̃x into Eq.
~11! and performing the trace, we find thatCx(t) is the sum
of the off-diagonal matrix elements

Cx~ t !5r1,21
~s! ~ t !1r21,1

~2s!~ t !. ~12!

Sinces̃x acts also in the bath space,r i , j
(s)(t) is different from

the usual reduced density matrix as it appears, e.g., in thsz

correlation function@5#. We shall refer tor i , j
(s)(t) as the

‘‘shifted reduced density matrix’’~SRDM!. To be general,
we now give a discussion for a continuous variableq, and
return to the two-state system only in Sec. IV. We have

r~s!~qf ,qf8 ,t !5E dxf^qf ,xf1suW~ t !uqf8 ,xf&

5E dqidqi8dxf dxidxi8K~qf ,xf1s,t;qi ,xi ,0!

3K* ~qf8 ,xf ,t;qi8 ,xi8,0!

3^qi ,xi uW~0!uqi8 ,xi8&, ~13!

whereK(qf ,xf1s,t;qi ,xi ,0) is the usual Feynman propag
tor that may be expressed as a path integral. The ma
elements of the initial ‘‘density matrix’’W(0)5s̃xWb read

^qi ,xi uW~0!uqi8 ,xi8&5^2qi ,xi2s sgn~qi !uWbuqi8 ,xi8&,
~14!
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where the bath coordinates are also affected by the prep
tion. Now, it remains to integrate out the shifted bath degr
of freedom in the expression~13!.

III. GENERAL INITIAL PREPARATIONS

The standard Feynman-Vernon approach that may
used to eliminate the bath degrees of freedom relies on
assumption of a factorized system-bath initial state. For
godic systems, it is possible to obtain a real-time descrip
also for a thermal initial state@2#. This approach can be
generalized to special classes of correlated initial states
introducing a preparation function@20#. For the case of
Cx(t), the method in Ref.@20# has to be reconsidered, sinc
the initial preparation also involves the bath. To proceed,
define a generalized preparation functi
lG(qi ,qi8 ;q̄,q̄8;xi ,xi8 ; x̄,x̄8) by

^qi ,xi uW~0!uqi8 ,xi8&

5E dq̄dq̄8dx̄dx̄8lG~qi ,qi8 ;q̄,q̄8;xi ,xi8 ; x̄,x̄8!

3^q̄,x̄uWbuq̄8,x̄8&. ~15!

Comparing this form with Eq.~14!, we see that the prepara
tion function factorizes as

lG~qi ,qi8 ;q̄,q̄8;xi ,xi8 ; x̄,x̄8!

5lS~qi ,qi8 ;q̄,q̄8!lR~xi ,xi8 ; x̄,x̄8!, ~16!

where the system’s and reservoir’s preparation functions
given by

lS~qi ,qi8 ;q̄,q̄8!5d~qi1q̄!d~qi82q̄8!, ~17!

lR~xi ,xi8 ; x̄,x̄8!5d@xi2 x̄2s sgn~qi !#d~xi82 x̄8!. ~18!

With the form~16!, the evolution of the SRDM~13! is given
by

r~s!~qf ,qf8 ,t !5E dqidqi8dq̄dq̄8JG~qf ,qf8 ,t;qi ,qi8 ;q̄,q̄8!

3lS~qi ,qi8 ;q̄,q̄8!, ~19!

where the generalized propagating function reads

JG~qf ,qf8 ,t;qi ,qi8 ;q̄,q̄8!

5E dxf dxidxi8dx̄dx̄8K~qf ,xf1s,t;qi ,xi ,0!

3^q̄,x̄uWbuq̄8,x̄8&K* ~qf ,xf ,t;qi ,xi ,0!

3lR~xi ,xi8 ; x̄,x̄8!. ~20!

For an ergodic system, the thermal density matrixWb in
Eq. ~20! can be expressed as follows. Describe the glo
system at a timet0,0 by a factorized density matrix
the system being in a position eigenstate, sayuq0&, and the
reservoir being in thermal equilibrium,
ra-
s

e
he
r-
n

by

e

re

al

W~ t0!5uq0&^q0u ^ e2bHR/Tr@e2bHR#,

and let it evolve out of this state under the full Hamiltonia
Then, if t0 is sent to the infinite past, the system has reac
at time zero the correlated initial state^q̄,x̄uWbuq̄8,x̄8&. With
these considerations, we may rewrite Eq.~20! as

JG~qf ,qf8 ,t;qi ,qi8,0
1;q̄,q̄8,02;q0 ,q08 ,t0!

5E DqE Dq8 expF i

\
~SS@q#2SS@q8# !GFG@q,q8;s#,

~21!

where SS@q# is the action corresponding to the syste
Hamiltonian ~2!. The functional integrations are over a
pathsq(t8) andq8(t8) that satisfy the constraints

q~ t0!5q0 , q~02!5q̄, q~01!5qi , q~ t !5qf ,
~22!

q8~ t0!5q08 , q8~02!5q̄8, q8~01!5qi8 , q8~ t !5qf8 .

~23!

All the effects of the bath onto the system’s dynamics
captured by the generalized influence functional

FG@q,q8;s#

5E dxf dxidxi8dx̄dx̄8dx0dx08WR~x0 ,x08!lR~xi ,xi8 ; x̄,x̄8!

3E DxE Dx8 expF i

\
~SR,I@x,q#2SR,I@x8,q8# !G ,

~24!

whereSR,I@x,q# is the action corresponding to the reservo
and interaction terms in Eq.~1!. The pathsx(t8) andx8(t8)
are subject to the constraints

x~ t0!5x0 , x~02!5 x̄, x~01!5xi , x~ t !5xf1s,
~25!

x8~ t0!5x08 , x8~02!5 x̄8, x8~01!5xi , x8~ t !5xf .
~26!

Compared to the standard Feynman-Vernon influence fu
tional, there are two differences. First, the end point of thx
path is shifted by the displacements, i.e., the bath does no
end up in a diagonal state at timet. Second, the reservoi
pathsx(t8) and x8(t8) are discontinuous at time zero, de
pending on the reservoir’s preparation functio
lR(xi ,xi8 ; x̄,x̄8).

IV. EXACT FORMAL SOLUTION

Having obtained an explicit expression for the SRDM
time t for a general initial preparation, we can now wri
down the exact formal solution for the coherence corre
tionsCx(t), Eq. ~12!. Inserting the preparation function~17!
into the SRDM~19!, we get
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Cx~ t !5 lim
t0→2`

(
qi ,qi8 ,qf

JG~qf ,2qf ,t;qi ,qi8,0
1;

2qi ,qi8,0
2;q0 ,q0 ,t0!,

whereqi ,qi8 ,qf56a/2. Note that there is a jump in theq
path at time zero. Inserting the reservoir preparation func
~18! into the influence functional~24!, the x8(t8) path ~26!
turns out continuous at timet850, whereas thex(t8) path
~25! is discontinuous. Because of the integration overxi , the
constraints~25! may equivalently be expressed as

x~ t0!5x0 , x~02!5xi , x~01!5xi1s sgn~qi !,

x~ t !5xf1s sgn~qf !. ~27!

Consider first the contributions toCx(t) with qi5qf . In
this case, the shifts in thex path at timest8501 and t85t
are equal, and thus we can eliminate the shift at posi
times by defining modified reservoir coordinates accord
to

x̃~ t8!5x~ t8!2s sgn~qi !Q~ t8!. ~28!

The pathx̃(t8) is continuous att850 and obeysx̃(t)5xf . In
the shifted coordinate, the bath is in a diagonal state at t
t. As the actionSR,I@x,q# appearing in the influence func
tional is quadratic both inx(t8) and inq(t8) and bilinear in
the coupling, the second term in Eq.~28! can be absorbed
into a modifiedq path, which is continuous att850,

q̃~ t8!5q~ t8!22qiQ~ t8!. ~29!

Writing the influence functional in terms of the path
q8(t8),x8(t8) and the modified pathsq̃(t8),x̃(t8), the dis-
placements is completely eliminated from the descriptio
Thus, after integrating out the bath degrees of freedom,
end up with an influence functional that is of the stand
Feynman-Vernon form for a factorized initial state at tim
t0 ,

FG@q,q8;s sgn~qi !#5F @ q̃,q8#. ~30!

All effects in s̃x induced by the polaronic cloud are in th
modified pathq̃(t8).

Next, consider the contributions to Eq.~27! with qi5
2qf . Now, it is not possible to end up with an influenc
functional of the form~30! in which the shifts of the bath
modes are fully absorbed into a modified pathq̃(t8). In the
usual charge picture~see below!, the caseqi52qf corre-
sponds to sequences of charges that violate overall neutra
As a result,D andvc cannot be combined to a function ofD r
alone. Instead, each contribution comes with an additio
factor (D r /vc)

4K and therefore is nonuniversal. Thus in th
scaling limitD r /vc→0, all contributions withqi52qf van-
ish.

With the above, the correlation function is now given b
n

e
g

e

e
d

ty.

al

Cx~ t !5 lim
t0→2`

(
qi ,qi8

JG~qi ,2qi ,t;qi ,qi8,0
1;

2qi ,qi8,0
2;q0 ,q0 ,t0!. ~31!

At this stage, it is important to note that the free propagat
in the propagating function depend on the original pa
q(t8) andq8(t8). The concept of modified paths is only use
to express the generalized influence functional in the s
dard Feynman-Vernon form. For the evaluation of Eq.~31!,
it is convenient to introduce the linear combinations

h~ t !5@q~ t !1q8~ t !#/a,
~32!

j~ t !5@q~ t !2q8~ t !#/a,

describing propagation along the diagonal of the density m
trix and off-diagonal excursions, respectively. For the tw
state system, these paths are piecewise constant with ju
at times t j . As usual, the time intervalst2 j,t8,t2 j 11 in
which the system is in a diagonal state are calledsojourns,
while the time intervalst2 j 21,t8,t2 j spent in an off-
diagonal state are referred to asblips. A sojourn is labeled by
h j561, depending on whether the system is in stateRR or
LL. Similarly, j j561 describes a blip in which the syste
is in stateRL or LR. The lengths of the sojourn and bli
intervals are denoted bysj5t2 j 112t2 j and t j5t2 j2t2 j 21 ,
respectively. All paths that contribute to the correlation fun
tion ~31! start out from the initial sojournh0 at time t0 and
end in the blip statej at time t. According to their behavior
at time zero, they can be divided into two groups. In gro
A, the system jumps at time zero from a sojourn to a b
state (qi852qi at time 01!. In groupB, the system hops a
time zero from a blip to a sojourn state (qi85qi at time 01!.
A general path withn blips at negative andm blips at posi-
tive times can be parametrized by

h~ t8!5 (
j 50

n1m21

h j@Q~ t82t2 j !2Q~ t82t2 j 11!#,

~33!

j~ t8!5 (
j 51

n1m

j j@Q~ t82t2 j 21!2Q~ t82t2 j !#,

with t2n12m5t @21#. For group A, we have t2n1150,
whereast2n50 for groupB. According to the boundary con
ditions, the paths are subject to the constraints

jn1m5jn1152hn , ~group A!, ~34!

jn1m52jn5hn , ~group B!. ~35!

Generic contributions to groupA and groupB are sketched
in Fig. 1.

Thus the correlation function is built up by two parts th
correspond to these two different path classes. We h
Cx(t)5Cx

A(t)1Cx
B(t) with
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Cx
A~ t !5 lim

t0→2`
(

j
JG~j,t;j,01;h52j,02;h0 ,t0!,

~36!

Cx
B~ t !5 lim

t0→2`
(

j
JG~j,t;h5j,01;2j,02;h0 ,t0!.

The path sum is over all sequences of blips and sojourns
implies time-ordered integration over the jump times. W
introduce the compact notation

E
t0

t

Dk,l$t j%5E
0

t

dtk1 l 11E
0

tk1 l 11
dtk1 l¯E

0

tk13
dtk12

3E
t0

0

dtk¯E
t0

t2
dt1 . ~37!

Here k and l represent the number of flips in the time r
gimes t0,t8,0 and 0,t8,t, respectively. For groupA,
we havek52n,l 52m22, whereas for groupB k52n21
and l 52m21. Each transition in Eq.~37! comes with a
factor 6 iD/2. There are two additional transitions at tim
zero, tk1150, and at timet, tk1 l 125t. These two hops
however, come without a factor6 iD/2 since they are no
dynamical. The jump at time zero is enforced by the ope
tion of s̃x , whereas the jump at timet is introduced for
convenience~cf. Ref. @21#!. The amplitude to stay in a so
journ is unity, while the amplitude to stay in blipj j is given
by exp(iejjtj). Thus, a full path gives for both groups a fact

2h0j~2D2/4!n1m21Dn,m ~38!

with the bias term

Dn,m5expS i e (
j 51

n1m

j jt j D . ~39!

Before discussing the modifications due to the pola
transformation, consider the standard influence functio
Performing integrations by parts, it takes the form@2#

F @h,j#5expH E
t0

t1

dt8E
t0

t8
dt9@ j̇~ t8!S~ t82t9!j̇~ t9!

1 i j̇~ t8!R~ t82t9!ḣ~ t9!#J , ~40!

where the kernelsS(t) andR(t) are the real and imaginar
parts of the second integral of the bath correlation functi
In the limit vct@1, we have@2#

FIG. 1. Path contributions to groupA ~top! and groupB ~bot-
tom!. The steps represent blips of either sign, and sojourns
indicated by the baseline.
nd

-

n
l.

.

S~ t !52K ln@~\bvc /p!sinh~pt/\b!#, ~41!

R~ t !5pK sgn~ t !. ~42!

Because of the form~33!, the velocities in Eq.~40! consist of
a series of delta functions centered at the flip times. T
suggests to regard the blip and sojourn paths as sequenc
charges: blip charges interact with each other through
kernelS(t), while the sojourn charges interact with the bl
charges viaR(t). Substituting the paths~33! into Eq. ~40!,
the influence functional takes the form

Fn,m5Gn,mHn,m . ~43!

The factorGn,m contains all the interblip and intrablip inter
actions,

Gn,m5expF2 (
j 51

n1m

S2 j ,2j 212 (
j 52

n1m

(
k51

j 21

j jjkL j ,kG , ~44!

L j ,k5S2 j ,2k211S2 j 21,2k2S2 j ,2k2S2 j 21,2k21 , ~45!

where Sp,q5S(tp2tq). The sojourn-blip interactions ar
captured by the phase factorHn,m . With the form~42!, each
sojourn only interacts with the subsequent blip,

Hn,m5expF ipK (
k50

n1m21

hkjk11G . ~46!

Substituting Eq.~41! into the term D2n12mGn,m , the
quantities D and vc are combined into a facto
D r

(222K)(n1m) , whereD r is the renormalized tunneling fre
quency, Eq.~5!. The autocorrelation function of the baresx
depends on the standard influence functional~43!–~46!. In
this case, however, there appears the quan
D2n12m22Gn,m because theD factors of the two blip charges
at time zero and timet are missing. Therefore the autoco
relation function of the baresx comes with an overall facto
D r

2/D25(D r /vc)
2K. Thus it is nonuniversal in the sense di

cussed above.
Now return to the correlation functionCx(t), which de-

pends on the generalized influence functionalFG. As shown
above, this can be expressed in the standard form~40! if we
substitute the modified paths

j̃~ t8!5j~ t8!2j@Q~ t8!2Q~ t82t !#,
~47!

h̃~ t8!5h~ t8!2j@Q~ t8!2Q~ t82t !#.

The effects of the subtractions in Eq.~47! are directly seen in
the charge picture. Taking into account the constraints~34!

and ~35!, one gets the following changes: In the pathj̃(t8),
the two blip charges at timest850 andt85t are canceled. In
the pathh̃(t8), the sojourn charge originally located at tim
t850 is moved to timet85t. It turns out that the influence
functionals for the paths of groupA and groupB are differ-
ent. We write

F n,m
A 5Gn,m

A Hn,m
A , F n,m

B 5Gn,m
B Hn,m

B . ~48!

re
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The blip-interaction factorsGn,m
A/B differ from the standard

Gn,m by the absence of the two blip charges att850 and
t85t. For groupA, this is

Gn,m
A 5expF2 (

j 51
j Þn11

n1m

S2 j ,2j 212 (
j 52

n1m

(
k51

j 21

j jjkL j ,k
A G ,

~49!

whereL j ,k
A describes the interblip correlations for the mod

fied sequence of charges. Ifj ,kÞn11 andÞn1m, L j ,k
A is

again given by Eq.~45!. In all other cases, the interactions
the missing charges have to be dropped in Eq.~45!. For
instance, for j 5n11, we have Ln11,k

A 5S2n12,2k21

2S2n12,2k . Similarly, we obtain for groupB

Gn,m
B 5expF2 (

j 51
j Þn

n1m

S2 j ,2j 212 (
j 52

n1m

(
k51

j 21

j jjkL j ,k
B G , ~50!

with analogous modifications inL j ,k
B for j ,k5n andn1m.

For instance, we haveLn,k
B 5S2n21,2k2S2n21,2k21 . The

modified phase factorsHn,m
i take the form

Hn,m
A 5expF ipK (

k50
kÞn

n1m21

hkjk11G ,

~51!

Hn,m
B 5expF ipK (

k50
kÞn

n1m21

@hkjk111hn~jn112jn1m!#G .

Thus each sojourn interacts with the subsequent blip ex
for sojournn. For groupA, the sojournn is effectively non-
interacting, whereas for groupB, it effectively interacts with
both blip n and blipn1m.

At this point, let us briefly reflect what we have gained
far. First of all, since the sequence of the remainingn
12m22 blip charges is neutral and comes with a fac
D2(n1m21), the quantitiesD and vc are combined into a
factor D r

(222K)(n1m21) . Thus, thes̃x autocorrelation func-
tion turns out to be universal. There is, however, an esse
difference between the two groups. For groupA, the charges
in the negative and positive time branches are neutral i
vidually. For groupB, there is an excess charge61 in each
branch, and only the combined arrangement is neutral ag
Since the asymptotic decay of equilibrium correlation fun
tions crucially depends on the interactions between the n
tive and positive time branches, we should expect differ
behaviors for groupA and groupB.

Collecting the various results, we obtain explicit expre
sions for the propagating functions of groupA and groupB
in Eq. ~36!,

JG~j,t;j,01;h52j,02;h0 ,t0!

52h0j (
n50

`

(
m51

` S 2
D2

4 D n1m21

3E
t0

t

D2n,2m22$t j% (
$j j %

A
Gn,m

A Dn,m (
$h j %

A
Hn,m

A , ~52!
pt

r

ial

i-

in.
-
a-
t

-

JG~j,t;h5j,01;2j,02;h0 ,t0!

52h0j (
n51

`

(
m51

` S 2
D2

4 D n1m21

3E
t0

t

D2n21,2m21$t j% (
$j j %

B
Gn,m

B Dn,m (
$h j %

B
Hn,m

B .

~53!

The summation is over allj j ,h j561. The superscripts
$¯%A and $¯%B indicate the constraints~34! and ~35! with
jn1m5j, respectively. Using Eqs.~36!, Cx(t) is obtained. It
is now straightforward to perform theh summations and to
use symmetry relations under exchange$j j%→$2j j%. Tak-
ing the limit t0→2`, the correlation function becomes in
dependent of the initial valueh0 . In the end, we find for the
symmetrized correlation functionSx(t)5ReCx(t) and the re-
sponse functionxx(t)5(22/\)Q(t)Im Cx(t) the expressions

Sx
A~ t !5

1

2 (
m51

`

~2D̄2!m21E
2`

t

D0,2m22$t j% (
$j j %

A
G0,m

A D0,m
~1 ! ,

~54!

Sx
B~ t !52 (

n51

`

(
m52

`

~2D̄2!n1m21sin2~pK !

3E
2`

t

D2n21,2m21$t j%

3 (
$j j %

jn5jn1152jn1m

j1jn1mGn,m
B Dn,m

~1 ! , ~55!

xx
A~ t !5

1

\ (
n51

`

(
m51

`

~2D̄2!n1m21tan~pK !

3E
2`

t

D2n,2m22$t j% (
$j j %

A
j1jn1mGn,m

A Dn,m
~1 ! ,

~56!

xx
B~ t !5

1

\ (
n51

`

(
m51

`

~2D̄2!n1m21tan~pK !

3E
2`

t

D2n21,2m21$t j% (
$j j %

B
j1Gn,m

B Dn,m
~1 !

3$sin2~pK !jn111cos2~pK !jn1m%. ~57!

Here we have introducedD̄25D2cos(pK)/2 and

Dn,m
~1 !5cosS e (

j 51

n1m

j jt j D . ~58!

Equations~54!–~58! are exact formal series expansions f
the symmetrized equilibrium correlation functionSx(t) and
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the response functionxx(t). Despite their formidable appea
ance, we can obtain exact results in certain limits. This
discussed in the remainder of this work. For the subsequ
analysis, it is convenient to switch from integrations over
flip times, Eq.~37!, to integrations over blip lengthst j and
sojourn lengthssj .

V. THE CASE K5 1
2

For the valueK5 1
2 , the above series forSx(t) andxx(t)

can be summed in analytical form using the concept of c
lapsed blips and collapsed sojourns@5#. Putting K5 1

2 2k
with k!1, the phase factor cos(pK)'pk vanishes in the
limit k→0. In order to have a finite contribution forK5 1

2 ,
each factor cos(pK) has to be compensated by a 1/k singu-
larity arising from the ‘‘short-distance’’ singularity of th
breathing mode integral of a dipole~blip or sojourn! with
interactione2S(t)'(vct)2(122k). Thus we have

I S K5
1

2D5 lim
K→1/2

D2cos~pK !E
0
dt e2S~t!5

p

2

D2

vc
[g.

~59!

We shall refer to an expression of the form~59! as a col-
lapsed dipole. Since a collapsed dipole has zero dipole
ment, it does not interact with other charges. Further, i
insensitive to a symmetric bias factor. In contrast, an o
bias factor in Eq.~59! prevents a dipole from collapsing, an
combined with a factor cos(pK), this term vanishes a
K→ 1

2 .
A blip or a sojourn becomes extended when the cos(pK)

factor and the short-distance singularity are absent. Wi
an extended blip of lengtht, the system may make any num
ber of visits of duration zero to a sojourn and then returns
the same blip. Mathematically, this is described by the ins
tion of a grand-canonical ensemble of noninteracting c
lapsed sojourns~CS!, yielding a CS form factore2gt/2. Like-
wise, within a sojourn of lengths, the system may make an
number of visits of duration zero to a blip state. This
represented by a grand-canonical ensemble of nonintera
collapsed blips~CB!. Since the system can return to eith
sojourn state, there is a multiplicity factor 2, yielding a C
form factore2gs.

An extended sojourn, saysk , remains free of insertions
only if the subsequent blip is weighted with an unconstrain
factor jk11 . In this case, the$j j% summation leads to can
cellations among the interactions stretching over the
tended sojourn, and thus it remains bare. It turns out that
is a general rule also forKÞ 1

2 , referred to as thej rule in the
following. For the correlation functions~55!–~57!, e.g., the
initial sojourn starting att0 remains bare due to the factorj1
in the exact formal expressions. There are no other bare
tervals in the negative-time branch. Thus, the lim
t0→2` is well behaved.

Based on these concepts, we now analyze the various
tributions. Consider first the symmetrized correlation fun
tion. Assigning the cos(pK) factors to the collapsing dipole
as in Eq.~59!, there is one cos(pK) factor left in Eq.~55!.
Thus the contributionSx

B(t) vanishes linearly withk as
K→ 1

2 . In Sx
A(t), the system dwells in the initial sojourn sta

h until time zero. At this time, it hops into the blip sta
s
nt
e

l-

o-
s
d

in

o
r-
l-

ing

d

-
is

n-
t

n-
-

j52h where it stays until timet, resulting in a factor
cos(e t). The blip of lengtht is decorated with a CS form
factor. Piecing the various components together, we find
damped oscillatory behavior

Sx~ t !5Sx
A~ t !5cos~et !e2gt/2. ~60!

The contributions toSx
A(t) are sketched diagrammatically i

Fig. 2. Since only collapsed sojourns contribute toSx(t) and
the short-distance behavior of the pair interaction is indep
dent of temperature, the expression~60! is valid at any tem-
perature.

Consider next the response function. The contribution
group A is sketched in Fig. 3. In the negative-time branc
the initial sojourn is followed by an extended blip and
extended sojourn state. Both of them are equipped with a
and CB form factor, respectively. At time zero, the syste
hops back into a blip state and stays there until timet. The
extended blip is again decorated with a CS form factor.
mathematical terms, we have fort.0

xx
A~ t !5

2

\
D2sin~et !e2gt/2E

0

`

dt ds

3sin~et!e2S~t!e2gt/2e2gs. ~61!

Now, as shown in Ref.@5#, the double integral times the
factor D2 is just P`5^sz(t→`)&. In the end, we find

xx
A~ t !5~2/\!P`sin~et !e2gt/2, ~62!

P`5
2

p
Im cS 1

2
1

\g

4pkBT
1 i

\e

2pkBTD , ~63!

wherec(z) is Euler’s digamma function. Thus we find aga
exponential decay, resulting from exponential suppress
factors due to collapsed blips or sojourns in each interva

FIG. 2. The diagram describingSx(t). The full and dashed lines
represent sojourns and blips, respectively. The empty box re
sents the insertion of a CS form factor within the blip interval. T
bullets mark transitions which are free of bath correlations beca
of the modified influence functional.

FIG. 3. The diagrams forxx
A(t) ~top! andxx

B(t) ~bottom!. The
full box represents the insertion of a CB form factor. The oth
symbols are analogous to Fig. 2. The upward and downward sp
symbolize the remaining charges.
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Now we turn to the contributions of groupB. It is imme-
diately clear that the part ofxx

B(t) resulting from the second
term in the curly bracket of Eq.~57! vanishes ask2 in the
limit k→0, whereas the first term is nonzero in this lim
Here, the system hops from the initial sojourn into a blip a
negative time2t and stays there until time zero, where
returns to a sojourn state. At times it hops again into a blip
state and dwells in this state until timet. Again, each blip
interval is decorated with a CS form factor, as discus
above. Because of the factorjn11 in Eq. ~57!, however, the
extended sojourn in the positive time branch is free of c
lapsed blips. The interacting dipole has lengtht1s and in-
troduces correlations between the negative and positive
branches~see Fig. 3!. Thus we have

xx
B~ t !5

D2

\ E
0

`

dtE
0

t

ds e2g~ t1t2s!/2e2S~t1s!

3cos@e~ t2t2s!#. ~64!

Introducing the dipole lengtht1s as a new integration vari
able, performing the other integrations, and combining
resulting expression with Eq.~62!, we obtain

xx~ t !5~2/\!@sin~et !F1~ t !1cos~et !F2~ t !# ~65!

with the functions

F1~ t !5
D2

2g E
0

`

dt e2S~t!sin~et!~e2gut2tu/21e2g~ t1t!/2!,

~66!

F2~ t !5
D2

2g E
0

`

dt e2S~t!cos~et!~e2gut2tu/22e2g~ t1t!/2!.

~67!

For asymptotic timest@1/g, we find from Eq.~65! at zero
temperature

xx~ t !5
8

p\

g2

g214e2

1

gt
. ~68!

The algebraic decay law arises from the contribution
group B. Because of the absence of collapsed blips in
sojourn intervals, this interval gets effectively very large
s't for t@1/g. The 1/t law in Eq. ~68! is simply the signa-
ture of the bare intradipole interaction,e2S(t)}1/t for K
5 1

2 . The algebraic law atT50 is not only of academic
interest, since it is also valid at low but finite temperatures
the intermediate time regime 1/g!t!\b. In the asymptotic
limit t@\b@1/g, we find exponential decay,

xx~ t !5
16

\g

g2

g214e2

1

\b
e2n1t/2, ~69!

where n152p/\b is the lowest bosonic Matsubara fre
quency.

Since we have calculated the expressions~60! and ~65!
independently, we are now in a position to verify wheth
they are consistent with the fluctuation-dissipation theore

Sx~v!5\ coth~\bv/2!xx9~v!. ~70!
a

d

l-

e

e

f
e

n

r
,

Taking the Fourier transform ofSx(t) and ofxx(t), we find
for the spectral functionSx(v) and the absorptive part of th
dynamical coherence susceptibilityxx(v):

Sx~v!5g
g2/41v21e2

~g2/41v21e2!224e2v2 ,

~71!

xx9~v!5
g

\
tanhS \v

2kBTD g2/41v21e2

~g2/41v21e2!224e2v2 .

This confirms that the FDT is satisfied. Finally, the real p
xx8(v) of the dynamical susceptibility reads~we pute50 for
simplicity!

xx8~v!5
8g

p\

1

g214v2

3ReFcS 1

2
1

\g

4pkBTD2cS 1

2
1 i

\v

2pkBTD G .
~72!

The linear static susceptibilityxx
(0)5xx8(v→0) diverges

logarithmically asT→0.
One final remark on the caseK5 1

2 is appropriate. The
correlation functions can also be calculated in a fermio
representation by exploiting the equivalence of the sp
boson model forK5 1

2 with the Toulouse limit of the aniso
tropic Kondo or resonance level model@2#. One finds that the
sx correlation function in the resonance level model direc
corresponds to thes̃x correlation function of the spin-boso
model @19#. The investigation of the spin-boson model
convenient when we depart from the particular caseK5 1

2 .

VI. THE CASE K5 1
2 2k

A. Expansion around K5 1
2

In the previous section, we have solved the caseK5 1
2 in

analytic form by using the concept of collapsed blips a
collapsed sojourns. Let us now consider the regimeK5 1

2

2k with k!1 and perform an expansion around the solut
of the correlation function forK5 1

2 . For finitek, a dipole is
actually no longer collapsed. The basic idea now is to
velop a k expansion by systematically taking into accou
the finite lengths of the blips and sojourns. To put up a g
eral computation scheme, it is essential to split the breath
mode integralI (K) given in Eq. ~59! into a contribution
I 1(K) from the short-length interval 0,t,1/g̃ and a re-
sidual contributionI 2(K) from lengthst.1/g̃. The inverse
time scaleg̃ is self-consistently determined by the short-tim
part I 1(K). We have

I 1S K5
1

2
2k D[g̃5D2pkE

0

1/g̃
dt

1

~vct!122k 'gS vc

g D 2k

,

~73!

where the factorpk is the remnant of the cos(pK) phase
factor. The frequencyg̃ is the effective inverse time scale o
the problem. The short-time partI 1(K), representing either a
collapsed blip or a collapsed sojourn, can be treated exa
in the same manner as described in the previous section.
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is, all possible arrangements of collapsed dipoles within
extended sojourn and blip of lengths andt, respectively, add
up to a CB form factore2g̃s and CS form factore2g̃t/2. The
strategy is then completed by developing a system
scheme to calculate the contributions from the extended
and sojourn intervals,t j ,sj.1/g̃. Since the leading contri
bution I 2(K) is of orderk, it is natural to set up an expansio
of the correlation function in the number of extended
poles. Clearly, this is not a systematic expansion ink since
every extended dipole also contributes higher-order cor
tions ink. However, the strategy will allow one to extract th
actual long-time behavior of the correlation function. To p
form the analysis, it is useful to introduce a diagramma
picture. A generic contribution of orderkm is obtained by
adding m extended dipoles to the respective diagram
K5 1

2 . Its structure and asymptotic behavior are essenti
determined by the following rules, which are drawn from t
exact formal expressions.

~1! Insertion of an extended sojourn into a dressed b
interval leads to the diagram of Fig. 4~top!, whereas inser-
tion of an extended blip into a dressed sojourn interva
diagrammatically represented in Fig. 4~bottom!.

~2! An extended dipole with insertion of a CB or CS for
factor has an effective length of order 1/g̃ and therefore can
not produce algebraic decay of the correlation function.

~3! An extended dipole that is free of CB and CS for
factors has a lengtht@1/g̃. Therefore, it is sensitive to th
unscreened dipole interactione2S(t)}t22K, and its length is
eventually limited by the overall lengtht.

These rules are in correspondence with the abovej rule.
We will now apply them to the symmetrized correlatio
function Sx(t) and to the response functionxx(t).

B. Response functionxx„t…

We start the discussion of the response function by c
sidering the path contributions of groupA, Eq. ~56!. In order
km, the diagram forxx

A(t), Fig. 3 ~top!, is supplemented by
m extended dipoles. They can be arbitrarily distribut
among the negative and positive time branches using rule~1!
~cf. Fig. 4!. As a result, each interval~except for the first
sojourn! is dressed by a CB or CS form factor. Thus, usi
argument 2,xx

A(t) decays exponentially.
Consider next the contribution toxx

B(t) from the first term
in the curly brackets of Eq.~57!, referred to asxx

B1(t). In
orderkm, the diagram in Fig. 3~bottom! for xx

B(t) is modi-
fied as follows. There are insertions ofm extended sojourns
which can be arbitrarily distributed among the two blip i
tervals displayed@rule ~1!#. Each of them is again confined t
a length of order 1/g̃. Due to the factorjn11 in Eq. ~57!,
however, the initial sojourn at positive times remains free

FIG. 4. Insertion of extended dipoles according to rule~2!.
n

ic
ip

-

c-

-
c

r
ly

p

s

-

f

insertions. At timest@1/g̃, the length of this interval is
therefore effectivelyt. Employing argument~3!, we see that
the contributionxx

B1(t) decays ase2S(t)}t2(122k). This law
is generally valid, only the prefactor depends on the num
of extended dipoles considered.

Starting with orderk2, there is also a contribution from
the second term in the curly brackets of Eq.~57!, called
xx

B2(t). The diagrams are as forxx
B1(t), apart from the cru-

cial difference that the first sojourn in the positive tim
branch is dressed. This is due to the absence of the fa
jn11 in xx

B2(t). Thus, according to rule~2!, xx
B2(t) decays

exponentially.

C. Symmetrized correlation function Sx„t…

Consider firstSx
A(t), Eq. ~54!, which has dynamics only

in the positive time branch. Employing rule~1!, we havem
extended sojourns in orderkm, and each of the blip and
sojourn intervals is dressed. Thus,Sx

A(t) decays exponen

tially on the time scale 1/g̃.
As emphasized in the previous section, the leading c

tribution to Sx
B(t) is of orderk. This term is found to be

Sx
B~ t !52pk

D2

2 E
0

`

dtE
0

t

ds$e2g̃s21%

3e2g̃~ t1t2s!/2e2S~t1s!cos@e~ t2t2s!#. ~74!

The reason for the subtraction in the curly brackets is
missing of diagrams without any insertions in the sojou
interval s. There is always at least one collapsed blip due
the constraint in thej summation of expression~55!. Intro-
ducing the lengtht1s as a new integration variable, th
other integrations can be performed. With the definition

F3~ t !5
D2

2g̃
E

0

`

dt e2S~t!sin~et!~e2g̃ut2tu/22e2g̃~ t1t!/2!,

~75!

and with g replaced byg̃ in the expression~67! for F2(t),
we find

Sx
B~ t !5pkH @cos~et !F2~ t !1sin~et !F3~ t !#

2
D2

2 S E
0

t

dt t e2S~t!e2g̃~t1t !/2cos@e~ t2t!#

1tE
t

`

dt e2S~t!e2g̃~t1t !/2cos@e~ t2t!# D J . ~76!

The dominating contribution fort@1/g̃ comes from the first
line in Eq. ~76!, yielding

Sx
B~ t !54k

g̃2

g̃214e2 S 1

g̃t
D 122k

. ~77!

The origin of the algebraic decay forkÞ0 is the subtraction
term in the curly brackets in Eq.~74!. The analysis shows
that the subtraction also appears in all higher orders ink.
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Thus the asymptotic behaviort2(122k) is generally valid for
kÞ0. For k→0, the prefactor of the algebraic decay la
vanishes and the decay is exponential@cf. Eq. ~60!#.

VII. LONG-TIME BEHAVIOR FOR GENERAL K<1

From the structure of the various contributions f
K5 1

2 2k, we can draw conclusions for the long-time beha
ior of the correlation functions for generalK,1. ForK sub-
stantially different from1

2 , the modifications concern the C
and CS form factors inserted in a given interval. Instead
collapsed noninteracting blips and sojourns, we now h
extended interacting dipoles and it is no longer possible
perform the grand-canonical sum in analytic form. Howev
according to thej rule, the sequences of charges are grou
into clusters that are separated by bare sojourns. Becau
the alternating sum of the charges within a cluster, the len
of a cluster is effectively of order 1/D r , where D r is the
renormalized frequency~5!.

With this being the only essential modification, th
asymptotic behaviors of the various contributions to the c
relation function at timest@1/D r emerge as follows. In
group A, there is a single neutral cluster surrounding t
origin of the time axis. Hence, bothSx

A(t) andxx
A(t) decay

exponentially. In groupB, we have a charged cluster in ea
time branch, satisfying overall neutrality. Since in bo
branches the initial sojourn is free of insertions, the two cl
ters are near the origin and neart, respectively, and they
interact with the unscreened charge-charge interac
e2S(t)}t22K @22#. This interaction directly determines th
long-time behavior ofSx

B(t) andxx
B(t). The contributions of

group B predominate over the exponential contributions
groupA for t@1/D r . Thus we have asymptotically

Sx~ t !}e2S~ t !}t22K, KÞ
1

2
, ~78!

xx~ t !}e2S~ t !}t22K. ~79!

Thus, thes̃x autocorrelation function atT50 decays with a
power law. The power depends on the damping stren
Again, theT50 decay laws~78! and ~79! hold also at very
low temperatures in the intermediate time regime 1/D r!t
!\b. In the asymptotic limitt@\b@1/D r , the correlation
functions show exponential decay,

Sx~ t !}e2Kn1t, xx~ t !}e2Kn1t, ~80!

where the decay rate isK times the lowest bosonic Matsub
ara frequencyn152p/\b.

Let us now put the decay law~78! in perspective with the
generalized Shiba relation for thesz correlation function@6–
8,12#. In the regimet@1/D r , this relation is expressed as

Sz~ t !522K@\xz
~0!/2#2

1

t2 . ~81!

In a charge representation forSz(t), the 1/t2 decay law re-
flects the dipole-dipole interaction between a neutral clu
in the negative-time branch and a neutral cluster in the p
-

f
e
o
,
d
of

th

r-

e

-

n

f

h.

er
i-

tive time branch. The power of the algebraic interaction
independent of the coupling strength and is 2 for Ohm
dissipation.

Our findings are consistent with the fluctuatio
dissipation theorem, Eq.~70!. Upon Fourier transforming Eq
~79!, we getxx9(v→0)}sgn(v)uvu2K21 for 0,K,1. Using
the FDT relation~70! for T50, we obtainSx(v→0), and
transforming back to time, we find consistency with the la
~78! for Sx(t). As a by-product, we obtain a useful relatio
directly connecting the prefactors of the expressions~78! and
~79!,

Sx~ t !5~\/2!cot~pK !xx~ t !, t@1/D r . ~82!

In lowest order ink, this relation is confirmed by the result
~68! and ~77!. The caseK5 1

2 is special, since the prefacto
of the 1/t law for Sx(t) vanishes according to the relatio
~82!. This is in agreement with the result~77! obtained from
the direct computation ofSx(t).

The asymptotic decay law~79! leads to a different behav
ior for the linear ~zero bias! static susceptibility
xx

(0)5*0
`dtxx(t) for K below and above1

2 . For K, 1
2 , the

slow decay ofxx(t) implies that the linear static susceptibi
ity diverges algebraically,xx

(0)}T2K21 as T→0. This indi-
cates that the system responds to a coherence inducing
turbation }s̃x in a nonlinear manner. Interestingly, th
regime K, 1

2 coincides with the coherence regime for th
population^sz(t)& at zero bias@10,15#. For K. 1

2 , the decay
of xx(t) is sufficiently fast so that the linear static suscep
bility is finite at T50. This corresponds to the incohere
regime for^sz(t)& at zero bias. The transition from nonlinea
to linear response atK5 1

2 thus reflects the intrinsic coher
ence properties of the system. These properties of the s
susceptibility have been confirmed numerically in Ref.@15#.

In conclusion, we have studied within a real-time a
proach the equilibrium correlation function of the polaro
dressed tunneling or coherence operator in the dissipa
two-state system. This quantity turns out to be universa
the scaling limit. The elimination of the bath modes leads
a modified influence functional that can be recast into
standard form at the expense of introducing modified sys
paths. We have obtained the exact formal expressions for
coherence correlations for arbitrary damping strengthK, and
we have presented analytic results for the particular c
K5 1

2 and for the narrow regimeK5 1
2 2k with k!1. The

long-time behavior is found to be}t22K for generalK,1,
reflecting the loss of coherence with increasing damp
strength. Generally, an algebraic decay law reveals that
initial state of the global system is correlated. In a cha
picture, the particular decay}t22K expresses the interactio
between two clusters with an excess charge of opposite s
Since they are embedded in the vacuum~j rule!, the interac-
tion is unscreened.
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